کاربرد مدل شبکه عصبی مصنوعی در پیشبینی پاسخهای آمیخته بیماری قلبی
نویسندگان
چکیده مقاله:
Background: In epidemiological and medical studies, sometimes researchers are faced for prediction of two response variables (simultaneously) based on a number of independent variables. When the response variable is mixed, according to established limits and absence of assumption, the classical statistical methods are not enough efficient for classification and prediction goals. The purpose of this study is using Artificial Neural Network (ANN) model to predict the mixed response variable in heart disease. Methods: A total of 276 cardiac patients who were discharged from Madani Hospital were studied as historical cohort, from October 2011 to March 2012. This sample was used to predict the cholesterol and also LDL levels of patients. Data was randomly divided into two sets: training (175 cases) and testing (91 cases) sets. Data analysis was made by ANN model with SCG algorithms in MATLAB software, version 7.11 and appropriateness of the model was assessed by the accuracy prediction. Results: The highest accuracy of prediction of mixed response variable was 51.76% for a four-layer ANN model. Conclusions: The ANN model is suggested to predict the mixed response variable in medical studies.
منابع مشابه
کاربرد مدل شبکه عصبی مصنوعی در پیش بینی پاسخ های آمیخته بیماری قلبی
زمینه و هدف: در مطالعات اپیدمیولوژی و پزشکی، گاهی پژوهشگر با مواردی مواجه میشود که لازم است دو متغیر پاسخ را به صورت توام (همزمان) از روی تعدادی متغیر کمکی پیشبینی نماید. زمانی که متغیر پاسخ آمیخته باشد، با توجه به محدودیتها و برقرار نبودن برخی پیش فرضها، روشهای کلاسیک آماری برای مدلبندی و پیشبینی کارایی لازم را ندارند. هدف این مطالعه بکارگیری مدل شبکه عصبی مصنوعی برای پیشبینی متغیر پاس...
متن کاملکاربرد شبکه عصبی مصنوعی جهت ارزیابی بیماری عروق کرونری قلب
Background and purpose: Since the human health is an essential issue in medical sciences, accurate predicting the individual's disease status is of great importance. Therefore, predicting with models minimum error and maximum certainty should be used. This study used artificial neural network model for predicting coronary artery disease (CAD) because it is more precise Comared to after models. ...
متن کاملکاربرد مدل شبکه عصبی مصنوعی در پهنهبندی خطر زمینلغزش
ینلغزش بهعنوان یکی از مخاطرات طبیعی در مناطق کوهستانی محسوب میشود که هر ساله منجر به خسارات زیادی میشود. حوضه آبریز دوآب الشتر با داشتن چهرهای کوهستانی و مرتفع و شرایط طبیعی مختلف دارای استعداد بالقوه زمینلغزش است. هدف از این تحقیق پهنهبندی خطر زمینلغزش با استفاده از مدل شبکه عصبی مصنوعی در حوضه دوآب الشتر میباشد. بدین منظور ابتدا پزمارامترهای مؤثر در وقوع زمینلغزش استخراج و سپس لایه...
متن کاملکاربرد شبکه عصبی مصنوعی در حسابرسی
چکیده بسیاری از فرآیندهای حسابرسی به سرعت در حال تغییرند. یکی از مسایل مهم حسابرسی این است که چگونه فناوری اطلاعات بر فرآیند حسابرسی ومهارتهای حسابرسی تأثیر میگذارد. حسابرسان باید از آمادگیهای لازم برای فعالیت در این محیط جدید برخورار باشند. یافتههای تازه در قلمرو فناوری اطلاعات و ارتباطات، حسابرسان را در نظارت و کنترل عملیات شرکت صاحبکار یاری میرسانند از جمله امکاناتی که در این محیط جدید...
متن کاملطراحی شبکه عصبی مصنوعی برای مدلبندی پاسخهای دو متغیره آمیخته و کاربرد آن در دادههای پزشکی
Background & Objective: Mixed outcomes arise when, in a multivariate model, response variables measured on different scales such as binary and continuous. Artificial neural networks (ANN) can be used for modeling in situations where classic models have restricted application when some of their assumptions are not met. In this paper, we propose a method based on ANNs for modeling mixed binary a...
متن کاملکاربرد شبکه عصبی مصنوعی جهت ارزیابی بیماری عروق کرونری قلب
سابقه و هدف: از آن جا یی که پیش بینی صحیح وضعیت بیماری افراد از اهمیت زیادی برخوردار است، لذا برای این پیش بینی بایستی از آن دسته مدل هایی استفاده کرد که دارای حداقل خطا و حداکثر اطمینان باشد. لذا در این مطالعه از روش شبکه عصبی مصنوعی که روش قوی تری نسبت به روش های موجود است جهت ارزیابی بسته بودن یا نبودن عروق کرونری قلب استفاده شد. مواد و روش ها: در این تحقیق از شبکه عصبی مصنوعی پرسپترون چند...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 20 شماره 113
صفحات 20- 28
تاریخ انتشار 2013-11
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی برای این مقاله ارائه نشده است
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023